Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Vaccine ; 41(25): 3796-3800, 2023 06 07.
Article in English | MEDLINE | ID: covidwho-2318727

ABSTRACT

BACKGROUND: Preventive measures applied during the COVID-19 pandemic have modified the age distribution, the clinical severity and the incidence of Respiratory Syncytial Virus (RSV) hospitalisations during the 2020/21 RSV season. The aim of the present study was to estimate the impact of these aspects on RSV-associated hospitalisations (RSVH) costs stratified by age group between pre-COVID-19 seasons and 2020/21 RSV season. METHODS: We compared the incidence, the median costs, and total RSVH costs from the national health insurance perspective in children < 24 months of age during the COVID-19 period (2020/21 RSV season) with a pre-COVID-19 period (2014/17 RSV seasons). Children were born and hospitalised in the Lyon metropolitan area. RSVH costs were extracted from the French medical information system (Programme de Médicalisation des Systémes d'Information). RESULTS: The RSVH-incidence rate per 1000 infants aged < 3 months decreased significantly from 4.6 (95 % CI [4.1; 5.2]) to 3.1 (95 % CI [2.4; 4.0]), and increased in older infants and children up to 24 months of age during the 2020/21 RSV season. Overall, RSVH costs for RSVH cases aged below 2 years old decreased by €201,770 (31 %) during 2020/21 RSV season compared to the mean pre-COVID-19 costs. CONCLUSIONS: The sharp reduction in costs of RSVH in infants aged < 3 months outweighed the modest increase in costs observed in the 3-24 months age group. Therefore, conferring a temporal protection through passive immunisation to infants aged < 3 months should have a major impact on RSVH costs even if it results in an increase of RSVH in older children infected later in life. Nevertheless, stakeholders should be aware of this potential increase of RSVH in older age groups presenting with a wider range of disease to avoid any bias in estimating the cost-effectiveness of passive immunisation strategies.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Infant , Child , Humans , Aged , Child, Preschool , Palivizumab/therapeutic use , Respiratory Syncytial Virus Infections/epidemiology , Antiviral Agents/therapeutic use , Pandemics , COVID-19/epidemiology , Hospitalization
2.
NPJ Vaccines ; 8(1): 57, 2023 Apr 20.
Article in English | MEDLINE | ID: covidwho-2302870

ABSTRACT

This study reports the 6-month humoral immune response in vaccinated patients concomitantly infected with Delta and Omicron BA.1 variants of SARS-CoV-2. Interestingly, the simultaneous exposure to the Delta and BA.1 S proteins does not confer an additional immune advantage compared to exposure to the BA.1 S protein alone.

3.
Sci Transl Med ; 15(687): eade0550, 2023 03 15.
Article in English | MEDLINE | ID: covidwho-2251212

ABSTRACT

The diversity of vaccination modalities and infection history are both variables that have an impact on the immune memory of individuals vaccinated against SARS-CoV-2. To gain more accurate knowledge of how these parameters imprint on immune memory, we conducted a long-term follow-up of SARS-CoV-2 spike protein-specific immune memory in unvaccinated and vaccinated COVID-19 convalescent individuals as well as in infection-naïve vaccinated individuals. Here, we report that individuals from the convalescent vaccinated (hybrid immunity) group have the highest concentrations of spike protein-specific antibodies at 6 months after vaccination. As compared with infection-naïve vaccinated individuals, they also display increased frequencies of an atypical mucosa-targeted memory B cell subset. These individuals also exhibited enhanced TH1 polarization of their SARS-CoV-2 spike protein-specific follicular T helper cell pool. Together, our data suggest that prior SARS-CoV-2 infection increases the titers of SARS-CoV-2 spike protein-specific antibody responses elicited by subsequent vaccination and induces modifications in the composition of the spike protein-specific memory B cell pool that are compatible with enhanced functional protection at mucosal sites.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies , Vaccination , Antibodies, Viral , Antibodies, Neutralizing
4.
Infect Genet Evol ; 106: 105381, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2286726

ABSTRACT

Island communities are interesting study sites for microbial evolution during epidemics, as their insular nature reduces the complexity of the population's connectivity. This was particularly true on Reunion Island during the first half of 2021, when international travel was restricted in order to mitigate the risk for SARS-CoV-2 introductions. Concurrently, the SARS-CoV-2 Beta variant became dominant and started to circulate at high levels for several months before being completely replaced by the Delta variant as of October 2021. Here, we explore some of the particularities of SARS-CoV-2 genomic evolution within the insular context of Reunion Island. We show that island isolation allowed the amplification and expansion of unique genetic lineages that remained uncommon across the globe. Islands are therefore potential hotspots for the emergence of new genetic variants, meaning that they will play a key role in the continued evolution and propagation of COVID-19 as the pandemic persists.

6.
J Glob Health ; 13: 04007, 2023 Feb 03.
Article in English | MEDLINE | ID: covidwho-2228613

ABSTRACT

Background: The emergence of COVID-19 triggered the massive implementation of non-pharmaceutical interventions (NPI) which impacted the circulation of respiratory syncytial virus (RSV) during the 2020/2021 season. Methods: A time-series susceptible-infected-recovered (TSIR) model was used early September 2021 to forecast the implications of this disruption on the future 2021/2022 RSV epidemic in Lyon urban population. Results: When compared to observed hospital-confirmed cases, the model successfully captured the early start, peak timing, and end of the 2021/2022 RSV epidemic. These simulations, added to other streams of surveillance data, shared and discussed among the local field experts were of great value to mitigate the consequences of this atypical RSV outbreak on our hospital paediatric department. Conclusions: TSIR model, fitted to local hospital data covering large urban areas, can produce plausible post-COVID-19 RSV simulations. Collaborations between modellers and hospital management (who are both model users and data providers) should be encouraged in order to validate the use of dynamical models to timely allocate hospital resources to the future RSV epidemics.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Child , Humans , Infant , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/prevention & control , Seasons , COVID-19/epidemiology , France/epidemiology
7.
J Med Virol ; 2022 Sep 11.
Article in English | MEDLINE | ID: covidwho-2234646

ABSTRACT

The emergence and sustained transmission of novel pathogens are exerting an increasing demand on the diagnostics sector worldwide, as seen with the ongoing severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic and the more recent public health concern of monkeypox virus (MPXV) since May 2022. Appropriate and reliable viral inactivation measures are needed to ensure the safety of personnel handling these infectious samples. In the present study, seven commercialized diagnosis buffers, heat (56°C and 60°C), and sodium dodecyl sulfate detergent (2.0%, 1.0%, and 0.5% final concentrations) were tested against infectious SARS-CoV-2 and MPXV culture isolates on Vero cell culture. Cytopathic effects were observed up to 7 days postinoculation and viral load evolution was measured by semiquantitative polymerase chain reaction. The World Health Organization recommends an infectious titer reduction of at least 4 log10 . As such, the data show efficacious SARS-CoV-2 inactivation by all investigated methods, with >6.0 log10 reduction. MPXV inactivation was also validated with all investigated methods with 6.9 log10 reductions, although some commercial buffers required a longer incubation period to yield complete inactivation. These results are valuable for facilities, notably those without biosafety level-3 capabilities, that need to implement rapid and reliable protocols common against both SARS-CoV-2 and MPXV.

8.
Euro Surveill ; 28(5)2023 02.
Article in English | MEDLINE | ID: covidwho-2224707

ABSTRACT

BackgroundAs record cases of Omicron variant were registered in Europe in early 2022, schools remained a vulnerable setting undergoing large disruption.AimThrough mathematical modelling, we compared school protocols of reactive screening, regular screening, and reactive class closure implemented in France, in Baselland (Switzerland), and in Italy, respectively, and assessed them in terms of case prevention, testing resource demand, and schooldays lost.MethodsWe used a stochastic agent-based model of SARS-CoV-2 transmission in schools accounting for within- and across-class contacts from empirical contact data. We parameterised it to the Omicron BA.1 variant to reproduce the French Omicron wave in January 2022. We simulated the three protocols to assess their costs and effectiveness for varying peak incidence rates in the range experienced by European countries.ResultsWe estimated that at the high incidence rates registered in France during the Omicron BA.1 wave in January 2022, the reactive screening protocol applied in France required higher test resources compared with the weekly screening applied in Baselland (0.50 vs 0.45 tests per student-week), but achieved considerably lower control (8% vs 21% reduction of peak incidence). The reactive class closure implemented in Italy was predicted to be very costly, leading to > 20% student-days lost.ConclusionsAt high incidence conditions, reactive screening protocols generate a large and unplanned demand in testing resources, for marginal control of school transmissions. Comparable or lower resources could be more efficiently used through weekly screening. Our findings can help define incidence levels triggering school protocols and optimise their cost-effectiveness.


Subject(s)
COVID-19 , Humans , Switzerland , Incidence , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , France/epidemiology , Italy/epidemiology , Schools
9.
Nat Commun ; 13(1): 6316, 2022 Oct 23.
Article in English | MEDLINE | ID: covidwho-2087201

ABSTRACT

From December 2021-February 2022, an intense and unprecedented co-circulation of SARS-CoV-2 variants with high genetic diversity raised the question of possible co-infections between variants and how to detect them. Using 11 mixes of Delta:Omicron isolates at different ratios, we evaluated the performance of 4 different sets of primers used for whole-genome sequencing and developed an unbiased bioinformatics method for the detection of co-infections involving genetically distinct SARS-CoV-2 lineages. Applied on 21,387 samples collected between December 6, 2021 to February 27, 2022 from random genomic surveillance in France, we detected 53 co-infections between different lineages. The prevalence of Delta and Omicron (BA.1) co-infections and Omicron lineages BA.1 and BA.2 co-infections were estimated at 0.18% and 0.26%, respectively. Among 6,242 hospitalized patients, the intensive care unit (ICU) admission rates were 1.64%, 4.81% and 15.38% in Omicron, Delta and Delta/Omicron patients, respectively. No BA.1/BA.2 co-infections were reported among ICU admitted patients. Among the 53 co-infected patients, a total of 21 patients (39.6%) were not vaccinated. Although SARS-CoV-2 co-infections were rare in this study, their proper detection is crucial to evaluate their clinical impact and the risk of the emergence of potential recombinants.


Subject(s)
COVID-19 , Coinfection , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , Prevalence , Coinfection/epidemiology
10.
Expert Rev Vaccines ; 21(12): 1701-1710, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2077473

ABSTRACT

INTRODUCTION: Fighting pandemics requires an established infrastructure for pandemic preparedness, with existing, sustainable platforms ready to be activated. This includes platforms for disease surveillance, virus circulation, and vaccine performance monitoring based on Real-World data, to complement clinical trial evidence. AREAS COVERED: Because of its complexity, this can best be done by combining efforts between public and private sectors, developing a multi-stakeholder approach. Public-Private-Partnerships increasingly play a critical role in combating infectious diseases but are still looked at with hesitancy. The Development of Robust and Innovative Vaccine Effectiveness (DRIVE) project, which established a platform for measuring brand-specific influenza vaccine effectiveness in Europe, exemplifies how to build a collaborative platform with transparent governance, state-of-the-art methodology, and a large network of participating sites. Lessons learned from DRIVE have been cardinal to set up COVIDRIVE, a platform for brand-specific COVID-19 vaccine effectiveness monitoring. EXPERT OPINION: The DRIVE partners propose that a debate on the benefits of Public-Private-Partnership-generated real-world evidence for vaccine effectiveness monitoring should be pursued to clarify roles and responsibilities, set up expectations, and decide the future environment for vaccine monitoring in Europe. In parallel, the driving factors behind PPP hesitancy should be studied.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , COVID-19 Vaccines , COVID-19/prevention & control , Influenza, Human/prevention & control , Public-Private Sector Partnerships
11.
Emerg Microbes Infect ; 11(1): 2423-2432, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2028961

ABSTRACT

Omicron variant is circulating in the presence of a globally acquired immunity unlike the ancestral SARS-CoV-2 isolate. Herein, we investigated the normalized viral load dynamics and viral culture status in 44 fully vaccinated healthcare workers (HCWs) infected with the Omicron BA.1 variant. Viral load dynamics of 38 unvaccinated HCWs infected with the 20A variant during the first pandemic wave was also studied. We then explored the impact of Omicron infection on pre-existing immunity assessing anti-RBD IgG levels, neutralizing antibody titres against 19A, Delta and Omicron isolates, as well as IFN-γ release following cell stimulation with SARS-CoV-2 peptides. We reported that two weeks after diagnosis a greater proportion of HCWs infected with 20A (78.9%, 15/19) than with Omicron BA.1 (44.7%, 17/38; p = 0.02) were still positive by RT-qPCR. We found that Omicron breakthrough infections led to an overall enhancement of vaccine-induced humoral and cellular immunity as soon as a median [interquartile range] of 8 [7-9] days post symptom onset. Among samples with similar high viral loads, non-culturable samples exhibited higher neutralizing antibody titres and anti-RBD IgG levels than culturable samples. Additionally, Omicron infection led to an enhancement of antibodies neutralization capacity against other SARS-CoV-2 isolates. Taken together, the results suggest that Omicron BA.1 vaccine breakthrough infection is associated with a faster viral clearance than that of the ancestral SARS-CoV-2, in addition this new variant leads to a rapid enhancement of the humoral response against multiple SARS-CoV-2 variants, and of the cellular response.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2/genetics , Virus Shedding , Antibodies, Viral , Immunoglobulin G , Antibodies, Neutralizing
12.
Viruses ; 14(8)2022 07 27.
Article in English | MEDLINE | ID: covidwho-1969493

ABSTRACT

In the present study, we provide a retrospective genomic surveillance of the SARS-CoV-2 pandemic in Lebanon; we newly sequence the viral genomes of 200 nasopharyngeal samples collected between July 2020 and February 2021 from patients in different regions of Lebanon and from travelers crossing the Lebanese-Syrian border, and we also analyze the Lebanese genomic dataset available at GISAID. Our results show that SARS-CoV-2 infections in Lebanon during this period were shaped by the turnovers of four dominant SARS-CoV-2 lineages, with B.1.398 being the first to thoroughly dominate. Lebanon acted as a dispersal center of B.1.398 to other countries, with intercontinental transmissions being more common than within-continent. Within the country, the district of Tripoli, which was the source of 43% of the total B.1.398 sequences in our study, was identified as being an important source of dispersal in the country. In conclusion, our findings exemplify the butterfly effect, by which a lineage that emerges in a small area can be spread around the world, and highlight the potential role of developing countries in the emergence of new variants.


Subject(s)
COVID-19 , COVID-19/epidemiology , Humans , Lebanon/epidemiology , Pandemics , Retrospective Studies , SARS-CoV-2/genetics
13.
Vaccines (Basel) ; 10(5)2022 May 06.
Article in English | MEDLINE | ID: covidwho-1875818

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is the leading cause of acute respiratory infection- related hospitalisations in infants (RSVh). Most of these infants are younger than 6 months old with no known risk factors. An efficient RSVh prevention program should address both mothers and infants, relying on Non-Pharmaceutical (NPI) and Pharmaceutical Interventions (PI). This study aimed at identifying the target population for these two interventions. METHODS: Laboratory-confirmed RSV-infected infants hospitalised during the first 6 months of life were enrolled from the Hospices Civils de Lyon birth cohort (2014 to 2018). Clinical variables related to pregnancy and birth (sex, month of birth, birth weight, gestational age, parity) were used for descriptive epidemiology, multivariate logistic regression, and predictive score development. RESULTS: Overall, 616 cases of RSVh in 45,648 infants were identified. Being born before the epidemic season, prematurity, and multiparity were independent predictors of RSVh. Infants born in January or June to August with prematurity and multiparity, and those born in September or December with only one other risk factor (prematurity or multiparity) were identified as moderate-risk, identifying the mothers as candidates for a first-level NPI prevention program. Infants born in September or December with prematurity and multiparity, and those born in October or November were identified as high-risk, identifying the mothers and infants as candidates for a second-level (NPI and PI) intervention. CONCLUSIONS: It is possible to determine predictors of RSVh at birth, allowing early enrollment of the target population in a two-level RSV prevention intervention.

15.
Viruses ; 14(5)2022 04 28.
Article in English | MEDLINE | ID: covidwho-1820408

ABSTRACT

OBJECTIVES: High viral load in upper respiratory tract specimens observed for Delta cases might contribute to its increased infectivity compared to the other variant. However, it is not yet documented if the Omicron variant's enhanced infectivity is also related to a higher viral load. Our aim was to determine if the Omicron variant's spread is also related to higher viral loads compared to the Delta variant. METHODS: Nasopharyngeal swabs, 129 (Omicron) and 85 (Delta), from Health Care Workers were collected during December 2021 at the University Hospital of Lyon, France. Cycle threshold (Ct) for the RdRp target of cobas® 6800 SARS-CoV-2 assay was used as a proxy to evaluate SARS-CoV-2 viral load. Variant identification was performed using a screening panel and confirmed by whole genome sequencing. RESULTS: Herein, we showed that the RT-PCR Ct values in Health Care Workers sampled within 5 days after symptom onset were significantly higher for Omicron cases than Delta cases (21.7 for Delta variant and 23.8 for Omicron variant, p = 0.008). This difference was also observed regarding patient with complete vaccination. CONCLUSIONS: This result supports the studies showing that the increased transmissibility of Omicron is related to other mechanisms than higher virus excretion.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nasopharynx , SARS-CoV-2/genetics , Viral Load
16.
Preprints.org ; 2022.
Article in English | EuropePMC | ID: covidwho-1786431

ABSTRACT

Following the rapid spread of COVID-19 across the globe, the intense response that was demanded of diagnostic centers and research laboratories prompted the use of numerous products and protocols for the management of SARS-CoV-2 specimens. In these settings, proper handling of such infectious specimen is necessary to ensure the safety of personnel and to reduce the risk of active transmission. Our aim was to evaluate the inactivation efficacy of different inactivating methods, notably from commercial lysis buffers available in diagnostic kits. Heat and sodium dodecyl sulfate detergent were also included in our investigations. A cell culture-based assay was used, and supported by molecular qRT-PCR detection, to show in vitro infectivity reduction after inactivation treatment. Overall, all the investigated methods were successful in inactivating SARS-CoV-2. Ten minutes of contact with the commercial buffers completely stopped in vitro SARS-CoV-2 infectivity. Fifteen minutes at 68°C and 30 minutes at 56°C as well as one hour with sodium dodecyl sulfate detergent at 2, 1, 0.5, and 0.1% yielded the same results. These findings demonstrate the reliability of these protocols with regards to biosafety. Inactivation by heat and sodium dodecyl sulfate detergent are rather simple and can be readily available methods for rendering an infectious SARS-CoV-2 specimen inactive, especially in settings where commercial buffers are not available.

17.
Lancet Infect Dis ; 22(7): 977-989, 2022 07.
Article in English | MEDLINE | ID: covidwho-1768664

ABSTRACT

BACKGROUND: Schools were closed extensively in 2020-21 to counter SARS-CoV-2 spread, impacting students' education and wellbeing. With highly contagious variants expanding in Europe, safe options to maintain schools open are urgently needed. By estimating school-specific transmissibility, our study evaluates costs and benefits of different protocols for SARS-CoV-2 control at school. METHODS: We developed an agent-based model of SARS-CoV-2 transmission in schools. We used empirical contact data in a primary and a secondary school and data from pilot screenings in 683 schools during the alpha variant (B.1.1.7) wave in March-June, 2021, in France. We fitted the model to observed school prevalence to estimate the school-specific effective reproductive number for the alpha (Ralpha) and delta (B.1.617.2; Rdelta) variants and performed a cost-benefit analysis examining different intervention protocols. FINDINGS: We estimated Ralpha to be 1·40 (95% CI 1·35-1·45) in the primary school and 1·46 (1·41-1·51) in the secondary school during the spring wave, higher than the time-varying reproductive number estimated from community surveillance. Considering the delta variant and vaccination coverage in Europe as of mid-September, 2021, we estimated Rdelta to be 1·66 (1·60-1·71) in primary schools and 1·10 (1·06-1·14) in secondary schools. Under these conditions, weekly testing of 75% of unvaccinated students (PCR tests on saliva samples in primary schools and lateral flow tests in secondary schools), in addition to symptom-based testing, would reduce cases by 34% (95% CI 32-36) in primary schools and 36% (35-39) in secondary schools compared with symptom-based testing alone. Insufficient adherence was recorded in pilot screening (median ≤53%). Regular testing would also reduce student-days lost up to 80% compared with reactive class closures. Moderate vaccination coverage in students would still benefit from regular testing for additional control-ie, weekly testing 75% of unvaccinated students would reduce cases compared with symptom-based testing only, by 23% in primary schools when 50% of children are vaccinated. INTERPRETATION: The COVID-19 pandemic will probably continue to pose a risk to the safe and normal functioning of schools. Extending vaccination coverage in students, complemented by regular testing with good adherence, are essential steps to keep schools open when highly transmissible variants are circulating. FUNDING: EU Framework Programme for Research and Innovation Horizon 2020, Horizon Europe Framework Programme, Agence Nationale de la Recherche, ANRS-Maladies Infectieuses Émergentes.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Child , Humans , Pandemics/prevention & control , SARS-CoV-2/genetics , Schools , Vaccination
19.
Euro Surveill ; 27(6)2022 Feb.
Article in English | MEDLINE | ID: covidwho-1686391

ABSTRACT

BackgroundThe COVID-19 pandemic has led to an unprecedented daily use of RT-PCR tests. These tests are interpreted qualitatively for diagnosis, and the relevance of the test result intensity, i.e. the number of quantification cycles (Cq), is debated because of strong potential biases.AimWe explored the possibility to use Cq values from SARS-CoV-2 screening tests to better understand the spread of an epidemic and to better understand the biology of the infection.MethodsWe used linear regression models to analyse a large database of 793,479 Cq values from tests performed on more than 2 million samples between 21 January and 30 November 2020, i.e. the first two pandemic waves. We performed time series analysis using autoregressive integrated moving average (ARIMA) models to estimate whether Cq data information improves short-term predictions of epidemiological dynamics.ResultsAlthough we found that the Cq values varied depending on the testing laboratory or the assay used, we detected strong significant trends associated with patient age, number of days after symptoms onset or the state of the epidemic (the temporal reproduction number) at the time of the test. Furthermore, knowing the quartiles of the Cq distribution greatly reduced the error in predicting the temporal reproduction number of the COVID-19 epidemic.ConclusionOur results suggest that Cq values of screening tests performed in the general population generate testable hypotheses and help improve short-term predictions for epidemic surveillance.


Subject(s)
COVID-19 , SARS-CoV-2 , France/epidemiology , Humans , Pandemics , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL